« Apprentissage automatique et Big Data: les défis de la mise à l'échelle »

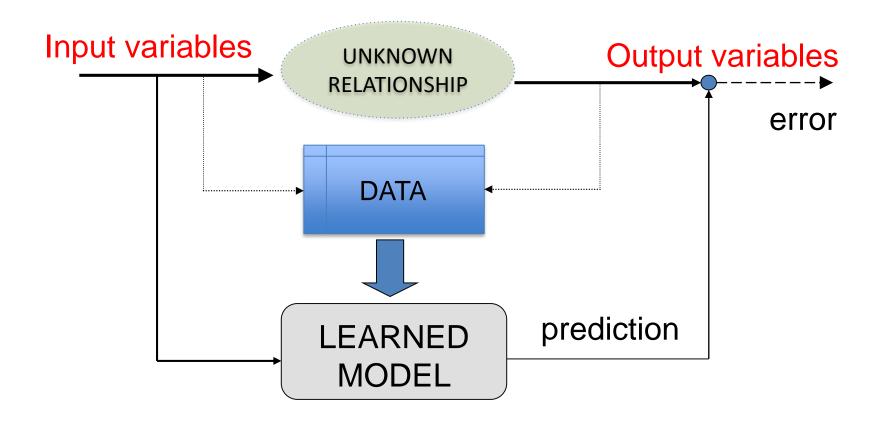
Gianluca Bontempi ULB Machine Learning Group, <u>mlg.ulb.ac.be</u>

ULB Machine Learning Group

Directors: Pr. Gianluca Bontempi, Pr. Tom Lenaerts, 4 academics, 4 postdocs, 10 PhD students

Research topics

- Big Data Mining
- Scalable machine learning
- Spatio-temporal forecasting
- Bioinformatics and Computational Biology
- Multiagent, game theory


Application domains

- Fraud detection (in collaboration with ATOS Worldline)
- Finance
- Genomics and Biomedical sciences
- Cryptoanalysis, cybersecurity
- Smart cities

Facilities

- Big data cluster
- Wireless sensors
- Experimental economics lab

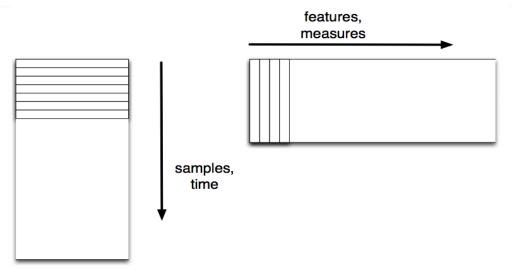
ML for the dummies

ML in the decision process

Data collection

ML/Prediction n/Modeling

Decision making


Countless number of applications

- Predict the performance of a aeronautic device on the basis of a set of parameters
- Predict whether you will like a film/movie (collaborative filtering)
- Assign keywords to articles and news in order to better classify them.
- Classifying credit applicants as low, medium, or high risk.
- Determining which home telephone lines are used for Internet access.
- Figuring out which customers are likely to stop being customers (churn).
- Estimating the value of a piece of real estate
- Predicting which CARREFOUR clients will be more interested to a discount in Italian products.
- Predict the probability that a company is employing black workers (social anti-fraud detection)
- Classify satellite images in civil and military sites.
- Predict which machine is most likely to be the next to fail.
- Predict the next value of a time series.

Recent MLG projects

- MOBI-AID: Brussels Mobility Advanced Indicator Dashboard
- BruFence: scalable machine learning for automating defense systems
- BRiDGEIris: BRussels big Data platform for sharing and discovery in clinical Genomics
- Adaptive real-time machine learning for credit card fraud detection.
- ICT4REHAB Advanced ICT Platform for Rehabilitation
- ARMURS Automatic Recognition for Map Update by Remote Sensing.
- DASIS Detection and analysis of social fraud in Social Security Databases.
- Integrating experimental and theoretical approaches to decipher the molecular networks of nitrogen utilisation in yeast.
- TANIA Système d'aide à la conduite de l'anesthésie.
- PIMAN Pôle de compétence en Inspection et Maintenance Assistée par langage Naturel.
- Predictive data mining techniques in anaesthesia.
- AIDAR Adressage et Indexation de Documents Multimédias Assistés par des techniques de Reconnaissance Vocale.
- Time series prediction of Belgian car market.

Challenges of scalable ML

Driving factors for accumulation:

- Vertical: streaming data, sensor measurements, process monitoring, security, financial transactions
- Horizontal: new measurement technologies (sensors technology, sequencing)

Challenges:

- Vertical: prediction, concept drift detection, model updating
- Horizontal: dimensionality reduction, (causal) feature selection

Horizontal big data: BridgeIRIS

- Genotype (input) phenotype (output) association
- Huge number of variables (10^7), thousands of samples

Input: Variant dataframe

Sample_ID	Chr	Position	Reference	Alternative	Zygosity	Gene Symbol	
HG03837	12	62114671	Т	C	1 0	FAM19A2	
HG03690	16	19051520	Α	G	0 1	TMC7	
HG02072	22	21829513	TTGTC	Т	1 1	TMEM191C	
HG02052	6	99771540	Т	С	0 1	PDCD2	

Genotype matrix

	S ₁	S 2	S 3	S 4	S 5	S 6	
V ₁ ,g ₁	1	O	О	1	О	О	
V ₂ ,g ₁	0	O	2	0	O	1	
V3, G 1	O	О	1	O	О	O	
V4, g 2	0	2	1	O	0	0	

Output: Scoring matrix

Scope	Score	
G 732	14	
G 1756	12	
G 91	12	
9 661	11	

DiGeST Distributed Gene & variant Scoring Tool

Define

- Control group
- Case group
- Scoring function

Return

Variant/Gene ranking

Rank

 r_1

Additional statistics

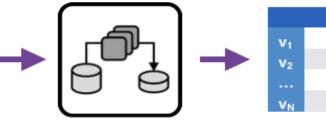
RESTful API

RESTful API

1) Variant filtering

Highlander genomics DB

Currently ~2700 exomes/genomes available. ~11.10^9 variants


Samples/Variants genotypes matrix

	V ₁	V ₂	 Vs
S ₁	0	1	 0
S ₂	1	2	 2
Sn	1	0	 2

- 0: Homozygous REF
- 1: Heterozygous
- 2: Homozygous ALT

2) Apply scoring function

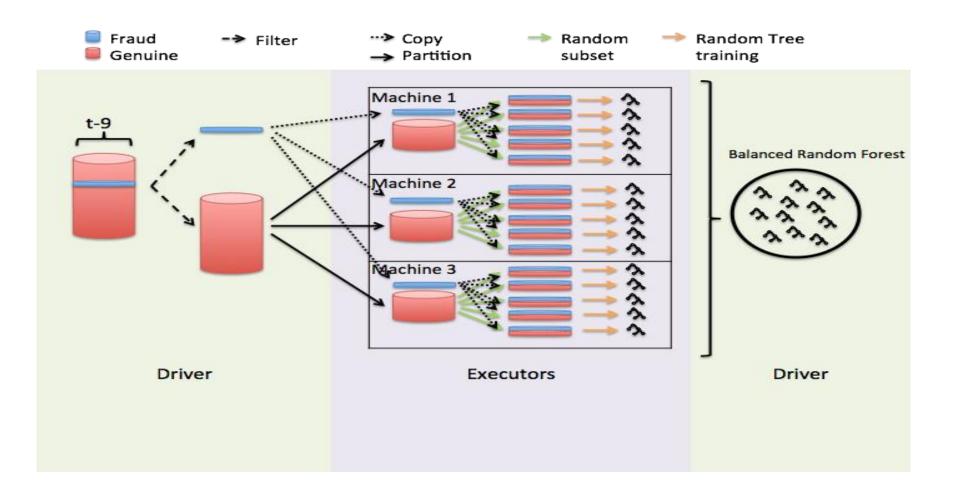
Spark distributed processing

Currently scoring for

- Variant
- · Gene

Monogenic and digenic

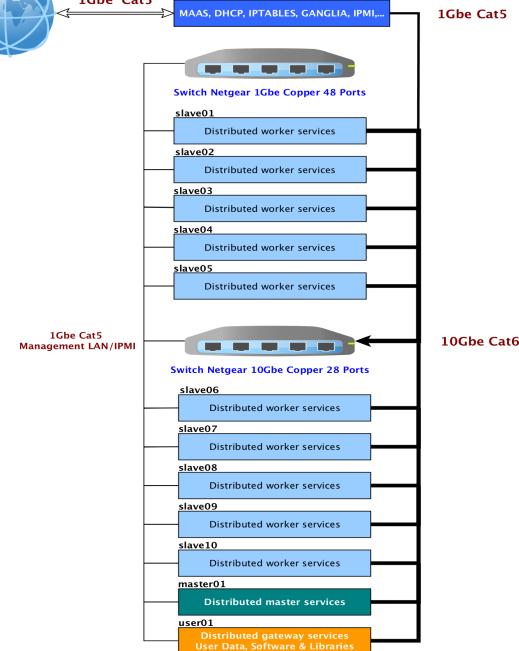
Vertical big data: BruFence


- Credit-card fraud detection in nearly run time
- Massive amounts of streaming data (~200000 tx/day)
- Unbalancedness
- Nonstationarity/ concept drift
- Delayed labeling of transactions

Collaboration with ATOS Worldline

Distributed machine learning

 Map-reduce distribution of state-of-the-art learning algorithms


MLG Big data cluster

1Gbe Cat5

Internet

1Gbe Cat5

- Hardware
 - 240 cores
 - **1.2 TB RAM**
 - 260TB Disk
 - 10Gb/s network
- Software
 - Cloudera Hadoop
 - Spark
 - Cassandra
 - H20

firewall

Big data: opportunities and risks

- Opportunities
 - Integration of heterogenous sources of information
 - Continuous learning
 - Better, faster predictive models
 - From analytical to data-driven science
 - Validation based science
- Risks
 - Excessive sense of confidence
 - Spurious causal inference
 - Ethical issues

Opportunities of collaboration

- Internships, Master thesis
- Joint research projects (FIRST Entreprise, Walloon projects)
 - Spatio-temporal forecasting
 - Classification, prediction
 - Big data analysis
 - Dimensionality reduction
 - Analysis of wireless sensor data
- Training
 - Data mining
 - Open source
 - Big data technologies (Spark, Hadoop)

Contact

Pr. Gianluca Bontempi

Pr. Tom Lenaerts

Machine Learning Group, Computer Science Dept. ULB mlg.ulb.ac.be www.facebook.com/mlgulb

Interuniversity Institute of Bioinformatics in Brussels ibsquare.be