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1. Project
Context

The use of insect-based meals in animal feed represents a major step toward a
more sustainable agri-food sector. Insect such as Tenebrio molitor and Hermetia
illucens, rich in protein and produced with a low environmental footprint, offer a
credible alternative to traditional protein sources.

Current limitations in insect meal authentication through optical microscopy:
• Requires advanced entomological expertise
• High morphological variability depending on species, stage, or treatment
• Risk of confusion with other materials (e.g., krill, bone fragments)

A European proficiency test (RIKILT, 2017) revealed that 90% of participating laboratories failed to detect insect material
in samples enriched at 1%, as reported by Van Raamsdonk, van der Fels-Klerx, and de Jong in New Feed Ingredients: The
Insect Opportunity.

Project Goal

To develop an automated recognition system capa-
ble of identifying insect-derived particles from optical
microscopy images for use in official quality control
procedures.

Implementation Strategy:
• 2 phases: First, distinguish insect vs. non-insect; then, classify Tenebrio vs. Hermetia

vs. non-insect
• Development of a dedicated microscopy image database
• Development of a deep learning model tailored to this task
• Final analysis and interpretation of classification performance

2. Implementation
Dataset

Figure 1 : Micrograph

Micrographs (Figure 1) were acquired using Keyence and Olympus microscopes
from particles extracted via double sedimentation. Samples included T. moli-
tor , H. illucens, and various non-insect materials (krill, fish bones, etc.).
The particles, ranging from a few tens to several hundreds of micrometres, were
manually annotated by an expert, with a focus on cuticle fragments for in-
sect samples. The dataset contains ±6,500 annotated particles: T. molitor
(±10%), H. illucens (±10%), others (±80%).

Extraction and preprocessing
Particles were automatically extracted from the micrographs using a YOLO-based object detection model
(Figure 2). Prior to classification, each patch underwent preprocessing: resizing to a fixed dimension of
384×384 pixels, normalization using ImageNet mean and standard deviation values, and extensive data
augmentation to enhance generalization. The augmentation pipeline included flipping, rotation, color
jitter, Gaussian blur, as well as advanced techniques such as MixUp and CutMix.

Figure 2 : YOLO extraction

Classification
Each extracted and preprocessed particle patch is processed by a classification model based on a
convolutional neural network (CNN). The ConvNeXt architecture serves as the backbone and is extended
with additional modules to enhance feature representation (Figure 3). The model outputs a confidence
score for each class, reflecting the probability that a given input belongs to a particular category. For
instance, as shown in Figure 3, when presented with a cuticle sample, the model predicted the ’insect’
class with 95% confidence, assigning the remaining 5% to the alternative class.

Input particle
384×384

Figure 3: Architecture of the classification model combining ConvNeXt and Transformer blocks.

Figure 3.1: Convnext block Figure 3.2: Transformers block Figure 3.3: Attention Pooling block Figure 3.4: Classifier block

To enhance the extraction of non-local features, Transformer blocks were incorporated into the
architecture. These self-attention mechanisms enable the model to capture global dependencies within
a particle. For instance, in the case of a cuticle fragment, the model may identify consistent structural
motifs or repeated patterns. Additionally, a Attention Pooling layer is employed to refine the feature
map by emphasizing the most informative regions of each patch.

To leverage existing visual representations, transfer learning was employed by initializing the models with
weights pre-trained on large-scale image datasets such as ImageNet. These models were then fine-tuned
to adapt to the specific task of particle classification. Training was carried out using 80% of the available
dataset, while the remaining 20% was reserved for validation. The ConvNeXt model, enhanced through
task-specific modifications, achieved the highest performance. In addition, measures were taken to address
class imbalance.

3. Results and Analysis
Validation, Confusion Matrices and t-SNE

Figures 4 and 5 present the confusion matrices for binary and three-class classification tasks, respectively.
The model achieves high performance in both scenarios, with a Matthews Correlation Coefficient (MCC)
of 0.92 in the binary case and 0.91 in the three-class setting. The MCC ranges from −1 (complete
disagreement) to +1 (perfect prediction), and is particularly appropriate for evaluating classifiers on
imbalanced datasets. Most misclassifications occur between Tenebrio and the Other class, which may
be explained by their visual similarity and the inclusion of unidentified insect particles within the Other
category. A 5-fold cross-validation was conducted, yielding an average MCC of approximately 90% across
all folds.

Figure 6 displays a t-SNE (t-distributed Stochastic Neighbor Embedding) projection of the learned feature
space. The embedding reveals well-separated clusters for the three classes, particularly for Hermetia and
Tenebrio, confirming the model’s ability to extract meaningful and discriminative representations.

Figure 4: Confusion matrix – 2-class

Figure 5: Confusion matrix – 3-class Figure 6: t-SNE projection of the feature vectors extracted by the model for all classes (Tenebrio, Hermetia, and
Other). Each point represents a classified particle, and colors indicate the ground truth class. Well-separated
clusters suggest that the model has learned discriminative representations for each category.

Tests

Figure 7: Tests, samples containing Hermetia

As a test example, Figure 7 shows a sample containing Her-
metia, where the predicted classes and confidence scores are
indicated by bounding boxes: red for non-insect, yellow for
Hermetia, and green for Tenebrio. This approach can be in-
tegrated with a Keyence microscope using full-slide scanning
mode to automate the detection and counting of particles
across entire slides. Additionally, the model can be deployed
on mobile devices to enable real-time inference through a
smartphone camera, allowing for portable, on-site screening.

Grad-CAM
Grad-CAM highlights the image regions most relevant to the model’s prediction. We observe that it
focuses on contours and internal patterns. For example, in H. illucens, the model often attends to
surface hairs and texture motifs, showing it uses meaningful visual cues for classification.
T. molitor:

H. illucens:

Other:

Conclusion
This project demonstrates the feasibility of an automated recognition system for insect meals using optical microscopy and deep learning. Leveraging a dedicated image dataset and a ConvNeXt-based model enhanced with
Transformer modules, the system achieves high and consistent performance, with a Matthews Correlation Coefficient of 0.91 in the three-class classification task. The solution can be integrated with microscope scanning
systems or deployed on mobile devices, enabling fast and reliable on-site screening. This work marks a promising step toward more automated quality control in the agri-food sector.


