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What is a foundation model?

ChatGPT LLaMA

Also called LLM (Large Language Models)
when they deal with language only ... But many of them multimodal now!




What is a foundation model?

arXiv
L https://arxiv.org> pdf  PDF %

On the Opportunities and Risks of Foundation Models

by R Bommasani - 2021 - Cited by 5300 — This report provides a thorough account of the opportunities
and risks of foundation models, ranging from their capabilities (e.g., language, ...
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What is a foundation model?

“A foundation model is any model that is trained on broad data (generally using self-supervision
at scale) that can be adapted (e.qg., fine-tuned) to a wide range of downstream tasks”
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What is a foundation model?

“A foundation model is any model that is trained on broad data (generally using self-supervision
at scale) that can be adapted (e.qg., fine-tuned) to a wide range of downstream tasks”
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Foundation models for generalist medical artificial
intelligence
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What is a foundation model?

“A foundation model is any model that is trained on broad data (generally using self-supervision
at scale) that can be adapted (e.qg., fine-tuned) to a wide range of downstream tasks”
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Self-supervision vanilla model

dataset (no labels)

pre-training

model
pretext
task
knowledge
transfer
= . target
y task

target model

From Noroozi et al, 2018 “Boosting Self-Supervised
Learning via Knowledge Transfer”



Self-supervision vanilla model

Pre-text task:

e no — Jigsaw reconstruction

pre-training

model
pretext
task

knowledge
transfer

o
B target Target task:

task At segmentation

target model

From Noroozi et al, 2018 “Boosting Self-Supervised Taleb et al., 2020, 3D Self-Supervised Methods for
Learning via Knowledge Transfer” Medical Imaging




Self-supervision: transformers (ViT)

/ﬁ Vision Transformer (ViT)
C

lass
Parotid
gland - II\{/I;E \
Oral cavity
Spinal cord .
Tumor
Transformer Encoder

|
" > P @IS ‘ @5 @15

Extra learnable
[class] embedding Linear Projection of Flattened Patches

===4I-llllll

WS
1

Image is divided into patches (or tokens)

Adapted from Dosovitskiy et al. 2021, “An image is worth 16x16 words”




Towards multimodal self-supervision

Florence-2 architecture, from Azure Al g Microsoft

N

The image shows a person riding a red
< bicycle on a road with a red car in the
D 10 background. The person is wearing a
[ white t-shirt, black pants, and a black hat.
D QO She has a backpack on her back and is
3 [0) pedaling with their feet on the pedals. The
3 road is lined with trees on both sides and
3 ro ) ( ) there is another person riding another
D [0} D bicycle in front of her. The date
Q. "9/22/2023" is visible in the bottom right
:] Q D corner of the image.
= &
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Xiao et al., 2023 “Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks”




Potential of foundation models

® Self-supervision — less need of annotated data for the fine-tuned (target) task
® Zero-shot learning (in-context learning)
Classify new, unseen categories without requiring any specific examples of
those categories during training




Applications in research?
Examples from the medical field




SAM (Segment Anything Model) 00 Meta Al

arXiv
#%  https://arxiv.org>cs  §

[2304.0264 3] Segment Anything

by A Kirillov - 2023 - Cited by 10376 — We introduce the Segment Anything (SA) project: a new task,
model, and dataset for image segmentation. Using our efficient model in a data ...
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(b) Model: Segment Anything Model (SAM)
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Segment Anything 1B (SA-1B):

* 1+ billion masks

* 11 million images
* privacy respecting
* licensed images

(c) Data: data engine (top) & dataset (bottom)




MedSAM (fine-tune SAM on med. images)

nature communications e 15M image—mask pairs
Explore content ¥ About the journal v Publish with us v () 10 |mag|ng mOda||t|eS
o _ _ ® 30 cancer types
nature > nature communications > articles > article . .
e Internal and external task validation
.;ticle | Open a;cess ‘ PuthI‘:fed: 22.January EZ;i I- °® Open‘source githUb.Com/bowang'
egmentan INg 1IN Medaical Images
g ything g lab/MedSAM
Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You & Bo Wamg‘E
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MedSAM (fine-tune SAM on med. images)

-
. 1.5M image-mask pairs
| 10 imaging modalities
l 30 cancer types
Internal and external task validation
Internal validation Open-source github.com/bowang-

g lab/MedSAM

SAM U-Net specialist DeepLabV3+ specialist MedSAM
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UNet not really used as current practice in RT:
I bounding boxes in each 2D slice
| one model per image modality (e.g. CT)
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UNet versus foundation models

20th International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

Segment anything model for head and neck tumor segmentation with CT, PET and
MRI multi-modality images

Jintao Ren'*, Mathis Rasmussen'?, Jasper Nijkamp'?, Jesper Grau Eriksen'* and Stine Korreman'?

"Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

’Danish Center for Particle Therapy, Aarhus University Hospital, Aax = *

Department of Experimental Clinical Oncology, Aarhus University Hospit Strahlentherapie und Onkologie (2025) 201:255-265

https://doi.org/10.1007/s00066-024-02313-8

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

The Segment Anything foundation model achieves favorable brain
tumor auto-segmentation accuracy in MRI to support radiotherapy
treatment planning

TECHNICAL NOTE @ Full Access

Technical note: Generalizable and promptable artificial

inte"igence model to augment clinical delineation in radiation Florian Putz'23(® - Sogand Beirami'? - Manuel Alexander Schmidt>3# - Matthias Stefan May?35 -
oncology Johanna Grigo'2 - Thomas Weissmann'2 - Philipp Schubert'2 - Daniel Hofler2 - Ahmed Gomaa'= -

Ben Tkhayat Hassen'2 - Sebastian Lettmaier'2 - Benjamin Frey'2 - Udo S. Gaipl'2 - Luitpold V. Distel"2 -
Lian Zhang, Zhengliang Liu, Lu Zhang, Zihao Wu, Xiaowei Yu, Jason Holmes, Hongying Feng, Haixing Dai, Sabine Semrau'?2 - Christoph Bert'2- Rainer Fietkau'2? - Yixing Huang'?

Xiang Li, Quanzheng Li, William W. Wong, Sujay A. Vora, Dajiang Zhu, Tianming Liu, Wei Liu 54

Received: 15 September 2024 / Accepted: 22 September 2024 / Published online: 6 November 2024
First published: 06 February 2024 | https://doi.org/10.1002/mp.16965 © The Author(s) 2024




Synthetic image generation

Text conditioned!




Synthetic image generation

naturemedicine

Explore content v About the journal v  Publish with us v

nature > nature medicine > articles > article

Article ‘ Published: 11 December 2024

Self-improving generative foundation model for
synthetic medical image generation and clmlcal
applications

Development and deployment

Jinzhuo Wang E, Kai Wang, Yunfang_Yu, Yuxing Lu, Wenchao Xiao, Zhuo Sun, Fe

Gao, Lei Yang, Hong-Yu Zhou, Hanpei Miao, Wenting_Zhao, Lisha Huang, Lingch:
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Synthetic image generation

naturemedicine

Explore content v About the journal v  Publish with us v

nature > nature medicine > articles > article

Article | Published: 11 December 2024
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naturemedicine

nature > nature medicine > articles > article

Article | Published: 11 December 2024

Self-improving generative foundation model for
synthetic medical image generation and clinical
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Virtual imaging trials

Collecting real images (for planning studies,
MED|CAI- PHYSK:S clinical trials, etc.) involves:

The International Journal of Medical Physics Research and Practice .
« High cost

REVIEW ARTICLE ® Time_consuming

Toward widespread use of virtual trials in medical imaging ° Privacy concerns issues for data Sharing
innovation and regulatory science

Ehsan Abadi 3% Bruno Barufaldi, Miguel Lago, Andreu Badal, Claudia Mello-Thoms, Nick Bottenus
Kristen A. Wangerin, Mitchell Goldburgh, Lawrence Tarbox ... See all authors v

First published: 06 October 2024 | https://doi.org/10.1002/mp.17442 | Citations: 6

AAPM TaSk Group (TG387) CENTER FOR VIRTUAL IMAGING TRIALS ~ y

Requirements for VIT A virtual platform for evaluating ‘/{ _\' (}(

- Diverse and realistic digital patient medical imaging technologies S .. 4
representations, from design to use

* Integration of physics and biology @

* Development of robust validation
frameworks



d I'\lV > cs > arXiv:2308.02463

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 4 Aug 2023 (v1), last revised 16 Nov 2023 (this version, v5)]

Towards Generalist Foundation Model for Radiology by Leveraging Web-scale 2D&3D

Medical Data

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie

d I'(lV > cs > arXiv:2406.06512

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 10 Jun 2024]

Merlin: A Vision Language Foundation Model for 3D Computed Tomography

Louis Blankemeier, Joseph Paul Cohen, Ashwin Kumar, Dave Van Veen, Syed Jamal Safdar Gardezi, Magdalini Paschal

7: @8] What type of
imaging modality is used to
acquire the given image?
R:CT

7: B please caption this scan
with findings and impression.

R: Findings: Left tongue mass with
adepth of invasion of 1cm (T2) ..
Impression: Squamous cell ...

[ Head and Neck ]

T: As shown in Fig.1, |if
an oblique X-ray of a 17
years old patient...

shows avulsion fracture.

[ Upper Limb

7: What abnormality can

l be observed in the areas
~ I of subpleural? FNER

R: Small cystic changes

Thorax ]

Jean-Benoit Delbrouck, Eduardo Reis, Cesar Truyts, Christian Bluethgen, Malte Engmann Kjeldskov Jensen, Sophie Ost
Varma, Jeya Maria Jose Valanarasu, Zhongnan Fang, Zepeng Huo, Zaid Nabulsi, Diego Ardila, Wei-Hung Weng, Edson /
Neera Ahuja, Jason Fries, Nigam H. Shah, Andrew Johnston, Robert D. Boutin, Andrew Wentland, Curtis P. Langlotz, Jas

Gatidis, Akshay S. Chaudhari

J: patient: Age: 20 years Gender: Male. .
R Radiculopathy and left upper limb

weakness. Identify the disease and

describe the classic radiological pre....

R: Osteochondroma. Radiological features..

[ Spine ]

impression.

7: IR Please caption
this scan with findings and

R: Findings: Below knee
m amputation margins of the
tibia and fibular are ...

J: Patient: Age: 30 years Gender: Male.
BB B (dentify the disease and the ...
R: Tuberculous lymphadenitis. The

radiological features are follows. CT: ...

[ Abdomen ]

7: M What disease is
shown on the given
images?

R: The images show a
typical pedunculated
osteochondroma

Lower Limb
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Towards Generalist Biomedical Al

Tao Tu* !, Shekoofeh Agizi* ¥ 2,
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Simon KornblithQ, David Fleetz, Philip Mansﬁeldl, Sushant Prakashl, Renee Wongl, Sunny Virmanil,
Christopher Semturs!, S Sara Mahdavi?, Bradley Green!, Ewa Dominowska!, Blaise Aguera y Arcas!,
Joelle Barral?, Dale Webster!, Greg S. Corrado!, Yossi Matias!, Karan Singhal®, Pete Florence?
Alan Karthikesalingam® %1 and Vivek Natarajant &1
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Let’s step back and think
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» Model and dataset size, governance

« Computational & Environmental Costs
« Transparency and reproducibility

« Testing and reliability
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« Model and dataset size, governance
« Computational & Environmental Costs
« Transparency and reproducibility

» Testing and reliability




How much data we need for a FM?

Performance Change of Varying Training Data Size
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nature communications
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 Need less annotated data but much more non-
annotated data to reach a good performance Article \ Open access \ Published: 22 January 2024
- But probably OK because pre-train only once? |Segmentanythinginmedicalimages
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Increasing number of parameters

Parameters in Selected Al Models

Some of these figures are estimates. Newer models are many times larger than their

predecessors.

GPT-1 117,000,000

GPT-2 | 1,500,000,000 Not possible for small research labs to create
Gemini Nano-1 | 1,800,000,000 foundation models, our work will be restricted
Gemini Nano-2 | 3,250,000,000 on fine-tune these models for our taks

Llama 3 8b I 8,000,000,000

Llama 3 70B . 70,000,000,000

Claude 2 I 130,000,000,000

GPT-3 B 175.000,000,000

Gemini Pro

https://explodingtopics.com/blog/gpt-parameters




Some examples 2024 / 2025

Model Creator(s) Type Date Open source Params

LLaMA 4 Meta Multimodal 2025 Yes 400B (MoE)

DeepSeek V3.1 DeepSeek Al Multimodal 2025 Yes 560 B
Phi-4 Microsoft Multimodal 2025 Yes 5.6B L=
Florence-2 Microsoft Multimodal 2024 Yes 0.8B L=
Qwen2.5-VL Alibaba Multimodal 2025 Yes 72B
Pixtral Large Mistral Al Multimodal 2024 Yes 124B
Gemini 2.5 Google DeepMind | Multimodal 2025 No 128B x 16 (MoE) E
GPT-40 OpenAl Multimodal 2024 No 1.8T (MoE) E
Claude 3.5 Anthropic Multimodal 2024 No 175B E
*MoE = mixture of experts More at github.com/uncbiag/Awesome-Foundation-Models

w
(=]



FM versus classical UNet

Foundation model §vh Regular (single-task) model ——

General Al '@i}‘; Narrow Al eyl [
Foundation DL model

70B parameters Model 3.3M parameters

15T tokens for training set ~ 6M tokens (100 patients) for training set

PAPER

3D radiotherapy dose prediction on head and neck cancer
'G)' patients with a hierarchically densely connected U-net deep

learning architecture

Dan Nguyen, Xun Jia, David Sher, Mu-Han Lin, Zohaib Igbal, Hui Liu and Steve Jiang

Published 18 March 2019 » © 2019 Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology, Volume 64, Number 6

L La M A Z Citation Dan Nguyen et al 2019 Phys. Med. Biol. 64 065020
DOI 10.1088/1361-6560/ab039b
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Computational & Environmental Costs

Trade-off between performance and sustainability

SAM MedSAM RT task
(Segment Anything)

SAM was trained on 256 A100 GPUS for 68 hours. We acknowledge the environmental impact and cost of training
large scale models. The environmental impact of training the released SAM model is approximately 6963 kWh
resulting in an estimated 2.8 metric tons of carbon dioxide given the specific data center used, using the calculation
described in [77] and the ML CO5 Impact calculator [61]. This is equivalent to ~7k miles driven by the average
gasoline-powered passenger vehicle in the US [101]. ¢ = ncsmsiommsone & o
retraining and lower the barrier to entry for large sca

Compute Publish Learn Act

Hardware type Hours Used Provider Region of Compute

A100 PCle 40/80G v

100

COMPUTE



Computational & Environmental Costs

Trade-off between performance and sustainability

SAM MedSAM RT task
(Segment Anything)

SAM was trained on 256 A100 GPUS for 68 hours. We acknowledge the environmental impact and cost of training
large scale models. The environmental impact of training the released SAM model is approximately 6963 kWh
resulting in an estimated 2.8 metric tons of carbon dioxide given the specific data center used, using the calculation
described in [77] and the ML CO5 Impact calculator [61]. This is equivalent to ~7k miles driven by the average
gasoline-powered passenger vehicle in the US [101]. We released the SAM models to both reduce the need for
retraining and lower the barrier to entry for large scale vision research.

BUT what if we end-up needing 200 UNets for all our-tasks?



Computational & Environmental Costs

It projects that electricity demand from data centres
worldwide is set to more than double by 2030 to around
945 terawatt-hours (TWh), .... Al will be the most significant
driver of this increase, with electricity demand from Al-
optimised data centres projected to more than quadruple by
2030.

Before, data centers (e.g. CECI) only CEC'
used by computer science research,

now they are more and more used by
researchers in many different fields

Do we need more investment in data
centers to keep up innovation?

Energy and Al

World Energy Outlock Special Report
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Generic tools for model & data reporting

Tool Reference Summary
L. Dorard, 2015, Generic and simple template for a model card,
ML Canvas https://www.ownml.co/ available in different formats: PDF, Word, html,

machine-learning-canvas

OpenDoc

|:> Model Card GO gle

Mitchell et al., arXiv 2019

First model card template, by Google. Generic to any
Al model. Includes model details, train / evaluation
data, and performance

Factsheets

M. Arnold et al., IBM Journal of
Research and Development,2019

Collection of relevant information (facts) to promote
transparency during the creation and deployment of
an Al model, by IBM

Datasheets | Microsoft

Gebru et al., arXiv 2021

First standard for datasets, by Microsoft. Generic to
any dataset. Includes motivation, composition,
collection process, cleaning, labelling, uses,
maintenance, etc.

HuggingFace
model creator

e
-

HUGGING FACE

Ozoani 2022,
hugginface.co/docs/hub/en/
model-card-annotated

Tool to help operationalize model cards and create
your own for specific applications




Model Card

e Model Details. Basic information about the model.
— Person or organization developing model
— Model date
— Model version
— Model type
- Information about training algorithms, parameters, fair-
ness constraints or other applied approaches, and features
— Paper or other resource for more information
— Citation details
— License
— Where to send questions or comments about the model
e Intended Use. Use cases that were envisioned during de-
velopment.
— Primary intended uses
— Primary intended users
— Out-of-scope use cases
e Factors. Factors could include demographic or phenotypic
groups, environmental conditions, technical attributes, or
others listed in Section 4.3.
— Relevant factors

— Evaluation factors
Format and content choice let to the users -
in order to be generic to any applications

prompts for each.

e Metrics. Metrics should be chosen to reflect potential real-
world impacts of the model.
— Model performance measures
- Decision thresholds
— Variation approaches

e Evaluation Data. Details on the dataset(s) used for the
quantitative analyses in the card.
— Datasets
— Motivation
— Preprocessing

¢ Training Data. May not be possible to provide in practice.
When possible, this section should mirror Evaluation Data.
If such detail is not possible, minimal allowable information
should be provided here, such as details of the distribution
over various factors in the training datasets.

e Quantitative Analyses
— Unitary results
— Intersectional results

e Ethical Considerations

e Caveats and Recommendations

Figure 1: Summary of model card sections and suggested



Guidelines for reporting Al research*

*specific to healthcare

Tool Reference Summary

|:> CLAIM Mongan et al., Radiology: Al 2020 Checklist for transparency in research papers involving Al in medical imaging
Model Fact Labels  Sendak 2020, npj Digital Medicine 1-page with relevant information to support clinicians for Al-based decision making
MINIMAR Hernandez-Boussard, Jamia 2020 Checklist for MINimum Information for Medical Al Reporting
SPIRIT-AI Cruz Rivera et al. Lancet Digit Health . o ) ) . . )
CONSORT-AI 2020 Guidelines for clinical trials protocols and reports for interventions involving Al
CLAMP Naga, Med Phys 2021 Methodology in sufficient detail to allow replication in publications
STARD-AI Sounderajah et al., BMJ Open 2021 Al version of the Standards for Reporting of Diagnostic Accuracy Study checklist
DECIDE-AI Vasey, BMJ 2022 Reporting Checklist for decision support systems (academic)
PRISMA-AI Cacciaman et al., Nat Med 2023 Guidelines for systematic reviews and meta-analysis of Al interventions
CLEAR Kocak et al., Insights Imaging 2023  CheckList for EvaluAtion of Radiomics research (CLEAR)
TRIPOD+AI Collins et al., BMJ 2024 Reporting of studies that develop a prediction model or evaluate its performance
PROBAST+AI Moons, BMJ 2025 Quality, risk of bias, and applicability assessment for prediction models using Al




Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update

Section/Topic No. Item
TITLE/ABSTRACT
1  Identification as a study of Al methodology, specifying the category of technology
used (eg, deep learning)
ABSTRACT
2 Summary of study design, methods, results, and conclusions
INTRODUCTION
3 Scientific and/or clinical background, including the intended use and role of the Al
approach
4 Study aims, objectives, and hypotheses
METHODS
Study Design 5 Prospective or retrospective study
6 Study goal
Data 7 Data sources
8 Inclusion and exclusion criteria
9 Data preprocessing
10 Selection of data subsets
11  De-identification methods
12 How missing data were handled
13 Image acquisition protocol
Rﬂﬁrﬂnce Standard 14 Definition of method(s) used to obtain reference standard
15 Rationale for choosing the reference standard
16  Source of reference standard annotations
17 Annotation of test set
18 Measures of inter- and intrarater variability of features described by the annortators
Data Partitions 19 How data were assigned to partitions

Level at which partitions are disjoint



The risk of general statements & wording

> Radiotherapy and Oncology = e TRIPOD and PROBAST checklist items were
ELSEVIEL Volume 194, May 2024, 110196 —5— adapted for Al reporting (Delphi process)

e 10 articles were scored by 6 co-authors

Original Article

Assessment of bias in scoring of Al-based e For 41 items (out of 61) no statistically

radiotherapy segmentation and planning significant kappa was obtained indicating
studies using modified TRIPOD and that the level of agreement among
PROBAST guidelines as an example multiple observers is due to chance alone
Coen Hurkmans 28 2 &, Jean-Emmanuel Bibault ¢, Enrico Clementeld.]ennifer Dhont &, . . . are
Wouter van Elmpt &, Georgios Kantidakis 9, Nicolaus Andratschke " ® Thls raises concerns abOUt the appllcablllty

of such checklists to objectively score
articles for Al applications

® New checklists should not use subjective
words nor composite questions.




The risk of general statements & wording

Radiotherapy and Oncology i

Volume 124, May 2024, 110196

=
Original Article
Assessment of bias in scoring of Al-based

radiotherapy segmentation and planning
studies USiI'Ig modified TRIPOD and 1. Checklist items composed of sub-questions/summations (e.g.,

PROBAST guidelines as an example “e.g., objectives, sample size, input parameters, statistical analysis,

study design and conclusions”) could be further clarified or

Coen Hurkmans 2 ® & & | Jean-Emmanuel Bibault &, Enrico Clementel ¢, Jennifer Dhont ®F, clarified how this should be scored if this is part]y answered.
Wouter van Elmpt 2, Georgios Kantidakis ¢, Nicolaus Andratschke "

LT

2. [Items with subjective words like “clearly”, “appropriate” or

“explain” can be problematic as leaving more space to subjective

interpretation and may even drift over time if the field gets more
mature. It was however decided not to replace them as otherwise
these items would start to substantially deviate from the original
items.



Let’s step back and think

 Model and dataset size, governance

« Computational & Environmental Costs

« Transparency and reproducibility

« Testing and reliability (knowing when to trust the Al?)

> Some methods (e.g. ensembling for UQ) can be still applied, but
not others (e.g. GradCAM for explainability)

> Testing still needs to be done task-specific!

> A lot to be explored! (main research in my opinion in the Al field)
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